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T W O - L A Y E R  G R A V I T Y  F L O W  OF A HEAVY F L U I D  

A B O V E  A C U R V I L I N E A R  B O T T O M  

L. G. G u z e v s k i i  UDC 532.5 

The class of hydrodynamic and aerodynamic free-surface problems with internal velocity-discontinuity 
surfaces is of great theoretical and practical interest. 

In problems of jet collisions, pneumonics, interaction of flows with different dynamic pressures, one 
deals with flows with internal discontinuity surfaces. In particular, the problem of internal waves in a two-layer 
liquid is classed among these problems. 

There are numerous methods for solving problems of two-dimensional flow with different Bernoulli 
constants both in linear [1, 2] and nonlinear [3-9] formulations. A considerable number of publications in this 
line are devoted to problems of internal waves. 

An effective method has been proposed [10-12] for precise nonlinear calculations of plane and 
axisymmetric flows of an ideal fluid with free surfaces. The present paper extends this method to the case of 
flow with discontinuity surfaces of the Bernoulli constant. 

The method is described and tested by calculation of the problem of potential two-layer flow above a 
curvilinear bottom in the class of soliton-type solutions. The particular case of this problem with a rectilinear. 
bottom has been studied by a number of authors. 

The proposed method allows one to obtain a numerical solution of the problem for a curvilinear bottom 
of an arbitrary shape, while the most effective method of calculating such flows [9] is applicable only for the 
particular case of a bottom irregularity in the shape of a circular half-cylinder. 

The accuracy of the method is tested by comparison of numerical and exact solutions of a certain 
model problem. 

Let us consider a two-dimensional problem of steady two-layer potential flow of a heavy fluid over 
an obstruction located on a horizontal straight bottom. The parameters for the lower layer are denoted by 
subscript 1, and those for the upper layer, by subscript 2. The flow dia3ram is shown in Fig. 

Soliton-type solutions symmetric about the vertical axis x = xo/2 (xo is the length of the obstruction) 
are sought for the free-surface and interface shapes. 

Let V + and V 1- denote the flow velocity along the inner interface with approach to this interface from 
above and from below, respectively. 

The condition of pressure continuity for passage through the interface, according to the Bernoulli 
equation, leads to the following relation for velocities on the sides of the interface: 

( ~-~1) 2 1 p2V~2 [1 " V+ "2" 
= plV21 - ( ~ 2 )  ] -  F-~( 1 -  ~ ) ( ~ 1 1 - 1 ) .  (1) 

Here Pl and P2 are the fluid densities, Frl = V o o l / v f ~  is Froude's number for the lower layer, g is the 
acceleration of gravity, and H1 is the interface ordinate at infinity. 

The constant-pressure condition along the free surface is equivalent to the following law of velocity 
distribution along it: 

V~ 2 =l-Fr--~2 H 2 - 1  , (2) 
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Fig. 1 

where Fr2 = Voo2/v/'~12 and H2 is the free-surface ordinate at infinity. 
Condition (2) is a particular case of condition (1) if the fluid density above the free-surface is assumed 

to be equal to zero. 
The stream function of the potential  flow of an ideal fluid at an arbitrary point z = z + iy in the flow 

region can be writ ten as 

Lo L; Lt L2 

where (L0, ~/o), (L 1 , V1) ,  (L1 +, VI+), and (L2, 1~) are the boundary surfaces and velocity distributions along 
them, the function R(z, C) is expressed in terms of the distances rl  --- Iz - ~1 and r2 = Iz - (1 between the 
points z, ~ = x(s) - iy(s),  and z, C by formula R(z,C ) = ln(r2/rl). 

When the point of observation tends to the boundary z --* z0 -- x(t) "k iy(t) in passage to the limit 
in Eq. (3), satisfaction of the condition of nonpenetration, which is equivalent to the condition of constant" 
stream-function values on each of the corresponding boundaries L0, L1 +, L1, and L2, leads to a system of 
four integral equations for the desired functions V0(s), V+(s), Yl+(s), and ]/2(8/. These functions describe 
parametrically the flow-velocity distribution along the obstruction and along the outer (with respect to the 
bottom) interface between the liquids, and the shapes of the interface and free surface. 

The  condition of flow symmetry about the vertical x = xo/2 is used in the solution of the problem. 
Along a given boundary L0 we introduce the integration variable 0 ~ s ~ 1, which is related to the 

arc length by 

I = / (1 ) s  l -a ,  

where 1(1) is the total arc length of the symmetric section and tx~r is the angle between the z axis and the 
tangent to the obstruction at the stagnation point. 

For a = 1/2, it is convenient to introduce the integration variable s given by the formula 

x ( s ) = - ~ -  1 - c o s  , 0 ~ < s ~ < l .  

The form of the function y(s) on this part of the boundary is determined by the equation of the 
obstruction surface y = F(x). In the particular case of an obstruction in the shape of a half-ellipse with 
aspect ratio ~, we obtain 

XO 371" 
= sin T "  

Let us introduce the function V, defined by the formula 

dl 
= Vo( ) 

Taking into account  the flow-velocity distribution law in the neighborhood of the stagnation point 
Vo ~. cl '~/(1-t'), we find that  for small s both the function 

dl 
= Vo( ) 
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and its derivatives are bounded functions. 
Thus, the chosen substi tution of the integration variable eliminates the singularity of the integrand in 

(3) at the stagnation point in integration along L0. 
In the numerical solution of the problem, at fairly great distances from the body upstream (at x ~< Xk) 

and downstream (at x >~ x0 + Xk) the flow is considered uniform. Accordingly, the interface and free boundary 
on these sections extending to infinity are considered linear. 

The adopted assumptions allow us to calculate analytically the integrals along semi-infinite linear parts 
of the boundaries Li- , L +, and L2. Let 

x(81-- x0 -~  s -- X k ( 1 - -  8), 0 < 8 < 1  

on the remaining symmetric parts of the boundaries. 
If points z and r = t) coincide, the integrand function in (3) has a logarithmic singularity. Integrals 

with a logarithmic singularity are calculated using the substitution of variables u r = It - 8[. The integer 
number r is chosen on the basis of the required smoothness of the integrand function for the new variable 
(r = 5 is assumed in the calculations). 

The dependence V,(s)  is found as a function of the variable u, which is related to the integration 
variable 8 by u = sin (s~r/2). This substitution ensures that  the function V,(u) is close to linear for a circular 
half-cylinder. For an obstruction of this shape this function would be linear in the case of one-layer flow of 
infinite depth. 

Satisfaction of the condition of nonpenetration along the boundary streamlines and the interface for 
a stream function in the form of (3) yields a system of integral equations for determining functions of flow- 
velocity distribution along the specified boundary (bottom profile) and interface and also for determining 
functions that  describe the shape of the unknown boundaries: the Bernoulli constant discontinuity line and" 
the free boundary. 

In the problem with a "cover," when the external-boundary shape is given, the velocity distribution 
along the external boundary is included in the number of the desired functions. 

The thus obtained system of four integral equations is solved by the spline collocation method. The 
unknown functions are approximated by cubic splines. A system of node points is introduced along each 
boundary. The conditions of satisfaction of integral equations at the interpolation nodes leads to a closed 
system of transcendental equations with respect to the values of unknown functions at these points. It is 
solved numerically by extending the Steffensen method for finding roots of a one-variable function to the n- 
dimensional case [13]. Such an algorithm has been previously applied to calculations of a number of free-surface 
problems [10-12, 14]. 

The accuracy of the numerical method was checked by calculating the following model (test) problem 
using this method. Let the obstruction have the shape of a half-cylinder with unit radius. The "free" boundary 
will be determined using, instead of boundary condition (2), the following velocity distribution law: 

= ( 1 2y2,~2 4Y2( 1 - x) 2 p2 : (1 - x) 2 + y2. 
1- +7J + p8 , 

The internal "interface" will be found using boundary condition (1) with p2 = pl and Voo2 = Vow1. 
An analytical solution of this auxiliary problem is readily obtained from the known solution of the 

problem of noncirculatory potential flow over a circular cylinder. In particular, the shapes of the "free" 
boundary and "interface" are defined by the relations 

Hi-y(1-p-2)=0, i=1,2. 
The accuracy of the method is fairly high even for a small number of node points. Let us illustrate this 

by comparison of numerical and exact solutions for H1 = 1 and / /2  = 2. In this case, the exact solution yields 
Ylmax : 1.618 and Y2max = 2.414, while the numerical solution with four nodes for each of the symmetric 
parts of the boundary gives Ylm~x = 1.618 and Y2max = 2.415. 
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TABLE 1 

H2/H1 a/ttl 

3.216 0.459 
3.216 0.2 
3.15 0.3 
2 0.2 
1.5 0.2 

p2/pl 

0.8 
0.05 
0.8 
0.3 
0.05 

Frl 

0.418 
1.051 
0.406 
0.758 
0.972 

[151 
0.419 
1.052 
0.408 
0.761 
0.975 

The results o~ the numerical solution for the straight cover problem of two-layer flow above a rectilinear 
bottom are listed in Table 1. They are compared with the results of the approximate solution of [15] which 
was obtained in a second approximation of shallow water theory. 

In the calculation of this problem the wave amplitude a was specified, and Froude's number Frl was 
the desired parameter. 
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